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ABSTRACT

A fully-coupled data assimilation (CDA) system, consisting of an ensemble filter applied

to GFDL’s global fully-coupled climate model (CM2), has been developed to facilitate the

detection and prediction of seasonal-to-multidecadal climate variability and climate trends.

The assimilation provides a self-consistent, temporally-continuous estimate of the coupled

model state and its uncertainty, in the form of discrete ensemble members which can be

used directly to initialize probabilistic climate forecasts. Here we evaluate the CDA us-

ing a series of perfect-model experiments, in which a particular 20th-century simulation –

with temporally-varying greenhouse gas and natural aerosol radiative forcings – serves as a

“truth” from which observations are drawn, according to the actual ocean observing network

for the 20th century. These observations are then assimilated into a coupled model ensem-

ble that is subjected only to pre-inductrial forcings. By examining how well this analysis

ensemble reproduces the “truth,” we then assess the skill of the analysis system in recov-

ering anthropogenically-forced trends and natural climate variability, given the historical

observing network.

The assimilation successfully reconstructs the 20th-century ocean heat content variability

and trends in most locations. The experiments highlight the importance of maintaining key

physical relationships among model fields, which are associated with water masses in the

ocean and geostrophy in the atmosphere. For example, when only oceanic temperatures

are assimilated, the ocean analysis is greatly improved by incorporating the temperature-

salinity covariance provided by the analysis ensemble. Interestingly, wind observations are

more helpful than atmospheric temperature observations for constructing the structure of the

tropical atmosphere; the opposite holds for the extratropical atmosphere. The experiments

indicate that the Atlantic meridional overturning circulation is difficult to constrain using

the 20th-century observational network, but there is hope that additional observations –

including those from the newly-deployed Argo profiles – may lessen this problem in the

21st century. The challenges for data assimilation of model systematic biases and evolving
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observing systems are discussed.
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1 Introduction

A numerical coupled model system that describes the interactions between the atmosphere,

land, ocean and sea-ice contains uncertainties. The uncertainties can be attributed to in-

complete understanding of radiative effects of various components of the earth system that

are simulated, and inaccurate numerical implementation of physical processes such as clouds,

radiation, convection and turbulent mixing etc. Therefore, the coupled model system can

be viewed as a continuous stochastic dynamical process (instead of a single deterministic

process), in which the climate evolution is described by a vectorized stochastic differential

equation (Jazwinski, 1970),

dxt/dt = f(xt, t) + G(xt, t)wt (1)

Here, xt is an n-dimensional vector representing the coupled model state at time t (n is the

size of the model state), f is an n-dimensional vector function, wt is a white Gaussian process

(uncorrelated in time) of dimension r with mean 0 and covariance matrix S(t) while G is

an n × r matrix. The first and second terms of the right hand side in Eq. (1) respectively

represent the deterministic modeling and uncertainty contributions in a coupled system.

These uncertainties lead to the existence of the modeled climate drifts from the real world.

On the other hand, observations on climate state variables are sparse and noisy in both time

and space. For example, the expendable bathythermograph (XBT), the major means of

measuring the ocean state throughout the 20th century, provides basically only temperature

profiles based on irregular ship courses; and starting from the early of 1990’s, satellite mea-

surements began to provide the changes of sea surface heights (SSH), i.e. altimetry data.

All observations have instrument measurement errors and sampling (representation) errors.

Neither modeling nor observations alone provide a complete picture of climate variations

(which in oceans are defined by the time series of 3-dimensional temperature, salinity and

currents etc.).

Climate research requires the implementation of data assimilation with coupled climate
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models for 1) assessment of climate change from all perspectives (e.g. see Hahn and Manabe

1982), 2) initialization of forecasts (Rosati et al. 1997) and 3) estimation of climate state

components for which adequate measurements are still unavailable. Coupled data assimila-

tion (CDA) uses ocean-atmosphere coupled dynamics to extract the signals from available

observations (some aspects of climate states during some time periods) to produce a conti-

nous timeseries of climate states in which each variable is distributed over a regular mesh

in time and space. Coupled dynamics impact the assimilation results in both direct and in-

direct ways. The direct way refers to using observations to directly adjust certain exchange

fluxes between coupled components using covariances between fluxes and observed variables.

Examples include that wind stresses and heat/water fluxes at the ocean surface are adjusted

by the observed temperature at the top of the ocean. On the other hand the assimilation

results can be impacted indirectly by the feedback processes between coupled components,

which improve the estimate of the background covariances in the assimilation. One example

is when only oceanic data assimilation (ODA) is carried out in a CDA system in which the

atmospheric circulations shall be improved by the corrected sea surface temperature (SST)

and in return the improved atmospheric flows provide better surface fluxes to the oceans

so as improving the estimate of the background covariance in ODA. This positive feedback

process shall speed up the convergence of assimilation and enhance the assimilation quality.

Combining all aspects above, the net result is that the reconstructed historical sequence of

climate states by CDA blends the observational information and coupled dynamics. Since all

components of the CDA-estimated coupled model state are expected to stay in a dynamical

balance at any instant in time, the initial shock of coupled model forecasts initialized from

CDA products is expected to be minimized.

The coupled data assimilation system at GFDL (Geophysical Fluid Dynamical Labo-

ratory, NOAA) solves for a temporally-varying probability density function (PDF) of cli-

mate state variables by combining the PDF of observations and a prior PDF derived from

dynamically-coupled models using the framework described by Eq. (1). The gained temporally-

varying PDF is a complete solution for the coupled data assimilation problem. The climate
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state is estimated by the expectation (the first moment of the PDF, i.e. the ensemble mean)

and the uncertainty of the estimate is measured by all higher order moments. The vectorized

Eq. (1) means that the solved PDF has a joint-distribution nature that reflects the physical

balance between state variables required by the coupled model dynamics. The prior PDF is

discretely estimated using a set of ensemble integrations of the coupled model by a Monte

Carlo approach. The combination of the observational PDF and the prior PDF is imple-

mented using the ensemble adjustment Kalman filter (EAKF, Anderson 2001; 2003). Since

four major components in the GFDL’s coupled climate models – atmosphere model, land

model, ocean model and sea-ice simulator – are highly parallelized, the ensemble filter, also

serving as the ensemble organizer, involves a so-called super-parallel technique, which is an

extension from the previous study of Zhang et al. (2005). The system is currently configured

for assimilating both atmospheric and oceanic observations. Under the same ensemble or-

ganizer and filter framework, other assimilation components (land and sea-ice, for instance)

can be added feasibly in the future when the relevant measurements for assimilation become

available. Utilizing the cross-covariances provided by the joint-PDF of climate state vari-

ables, evaluated by the ensemble integrations, the system is able to maintain the physical

balance (relying on the ensemble size according to the availability of computation resources)

between different climate state variables. Thus, it has a wide scope of applications.

For multiple purposes such as climate detection, ocean observing system evaluation and

assimilation validation etc., as the first step of the CDA system application this study and

the follow-up one (Zhang et al. 2006) are using a perfect model study framework, or called

idealized ‘twin’ experiments. The truth in the twin experiments is a long model integra-

tion with the temporally-varying green house gas (GHG) and natural aerosol (NA) radiative

forcings. The ‘observations’ are the projections of the truth onto a certain observational

network, imposed by white noise to simulate the observational errors. Under the perfect

model study framework, the CDA system has completed a series of long (25 years) assimi-

lation experiments based on the 20th century (XBT, CDT... etc) and 21st century (Argo)

ocean observational networks. This study focuses on the system description and the first
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step validation. In particular two test cases are examined to illustrate the importance of

maintaining geostrophic balance in atmospheric data assimilation (ADA) and maintaining

the temperature-salinity (T-S) relationship in oceanic data assimilation (ODA). The most

difficult assimilation case in the series of ODA experiments, uses a fixed-year GHGNA ra-

diative forcing to retrieve the truth (from a simulation with the temporally-varying GHGNA

radiative forcings) through the XBT network. Its analysis serves as a preliminary evaluation

of the system. Detailed analyses and diagnostics about the impact of the XBT/Argo ocean

observational network, the temporally-varying GHGNA radiative forcing in assimilation and

the atmospheric data constraint on climate detection will be presented in follow-up studies.

This study is organized as follows: Section 2 describes the coupled model and filtering

algorithm with parallelization design. Section 3 describes twin experiment design. Section 4

examines the importance of maintaining the T-S relationship in oceanic data assimilation.

Here the importance of assimilating salinity data for estimating climate states, based on a

dummy salinity observing network, is also discussed. Section 5 examines the importance of

maintaining geostrophic balance in reconstructing the mid- and high-latitude atmospheric

structure. Section 6 analyses and discusses the results of a long ODA experiment, which

provides a preliminary evaluation of the system. Summary and discussions are given in

section 7.

2 Description of coupled data assimilation system

2.1 GFDL’s coupled climate model: CM2

Using both the B-grid finite difference and finite-volume atmosphere dynamical cores, GFDL

has two coupled climate models: CM2.0 and CM2.1. For convenience of Massive Parallel

Processing (MPP) design of the ensemble filter, the B-grid version (CM2.0) is first chosen

to implement the coupled data assimilation. The CM2.0 uses the GFDL atmosphere model

AM2p12 (AM2/LM2, GAMDT 2005) with a B-grid dynamical core that has 24 vertical

levels and 2.5◦ longitude by 2◦ latitude horizontal resultion, including a Mellor-Yamada 2.5
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dry planetary boundary layer, relaxed Arakawa-Schubert convection and a simple diffusive

parameterization of the vertical momentum transport by cumulus convection.

The ocean component is the fourth version of Modular Ocean Model (MOM4) configured

with 50 vertical levels (22 levels of 10 m thickness each in the top 220 m), 1◦
× 1◦ horizontal

B-grid resolution telescoping to 1/3◦ meridional spacing near the equator. The model has

an explicit free surface with true freshwater fluxes exchanged between the atmosphere and

ocean. Parameterizations include KPP vertical mixing, neutral physics, a spatially-depedent

anisotropic viscosity, a shortwave radiative penetration depth that depends on a prescribed

climatological ocean color. Insolation varies diurnally and the wind stress at the ocean

surface is computed using the velocity of the wind relative to the surface currents. An

efficient time-stepping scheme (Griffies 2005) is employed. More details can be found in

Gnanadesikan et al. (2005) and Griffies (2005).

The sea-ice component of CM2.0x is the GFDL Sea Ice Simulator (SIS), a dynamical ice

model with three vertical layers (one snow and two ice) and five ice-thickness categories. The

elastic-viscous-plastic technique (Hunke and Dukowicz 1997) is used to calculate ice internal

stresses, and the thermodynamics is a modified Semtner three-layer scheme (Winton 2000).

More details can be found in Appendix 1 of Delworth et al. (2005). The interactions of these

four major model components in the GFDL’s coupling system are schematically demostrated

in Fig. 1.

2.2 Ensemble adjustment Kalman filter under a local least squares
framework

The general derivation of an ensemble filter from the Bayes’s rule (Jazwinski, 1970) can be

found in the literature (e.g. Evensen, 1994; Miller et al., 1994,;1998; 1999; Houtekamer and

Mitchell, 1998; 2001; Burgers et al., 1998; Van Leeuwen, 1999; Mitchell and Houtekamer,

2000; Bishop et al., 2001; Hamill et al., 2001; Anderson, 2001; Whitaker and Hamill, 2002).

Tippett et al. (2003) analyzed existing ensemble-based filters (Anderson, 2001; Bishop
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et al., 2001; Whitaker and Hamill, 2002) and pointed out that these methods are roughly

equivalent and suggested that the deterministic square root filter (Andrews, 1968) as a unified

family name may be appropriate. Houtekamer and Mitchell (2001), Anderson (2003) pointed

out that ensemble-based filters can be applied sequentially to individual scalar observations

when each scalar observation has an independent error distribution, or with the application

of a singular value decomposition technique when the observational errors are correlated

(Anderson, 2003). Furthermore, Anderson (2003) described a two-step data assimilation

procedure for ensemble filtering under a local least squares framework, which is quite suitable

for applying to implementation of parallelization if an appropriate core domain and halo

size is defined (Zhang et. al 2005). Without mathematical details, but with the aid of

a schematical diagram as shown as Fig. 2, a detailed flow for the two-step assimilation

procedure is depicted: the first step computes ensemble increments at an observation location

and the second step distributes the increments over the impacted grids. This universal

algorithm is applied to the atmospheric data assimilation (ADA, sections 5) and oceanic

data assimilation (ODA, section4) with their own parameters according to the different time

scale and internal variability in atmospheric/oceanic processes for constructing the GFDL’s

CDA system.

The two-step procedure first computes the ensemble increment at the observation location

produced by an observation available, y with the observation value yo and standard deviation

σo
y, which has a Gaussian distribution (marked by the thick-dashed arrow “STEP1”). Then

a least square fit is used to distribute the increment over the relevant grid points (marked

by the thick-dashed arrow “STEP2”) for each ensemble member. The reshape (solid arrow

1) of the prior PDF at the observation location denotes the formation of the new ensemble

spread, (∆y
′

as below, dotted curve in right-bottom panel) from the prior ensemble spread

(∆yp as below, solid-thin curve) by the observation distribution (denoted by “obs PDF”).

∆y
′

i is formulated by
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∆y
′

i =
∆yp

i
√

1 + r2

k

(2)

rk =
σp

k,k

σo
k,k

(3)

where i represents the ensemble sample index and k represents the observation index, σo
k,k and

σp
k,k represent the standard deviation of the observation error and its prior estimate from the

ensemble, respectively. rk is the ratio of the estimated prior ensemble standard deviation

and the observational error standard deviation. Eq. (3) says that if the estimated prior

ensemble variance is greater than the observational error variance (rk > 1), the ensemble

spread is largely reduced by the observation, and otherwise the ensemble stays close to the

prior. The shift of ensemble mean (solid arrow 2) induced by this observation is computed

by

yu =
yp

1 + r2

k

+
yo

1 + r−2

k

. (4)

(4) shows that if the estimated prior ensemble variance is greater than the observational

error variance, the ensemble mean shifts towards the observation value, and otherwise the

ensemble mean stays close to the prior. Then, the increment induced by the observation yo

for the i -th ensemble sample member at the observation location is

∆yo
i = (yu + ∆y

′

i) − yp
i . (5)

Once the ensemble increments at the observation location are available, a least square fitting

is applied to distribute the increments onto all gridpoints impacted by the observation using

the covariance between the gridpoint (j) and the observation location (k), cp
j,k, as

∆xi,j =
cp
j,k

σp
k,k

∆yo
i (6)
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where x represents the component of certain state variable at gridpoint j. The computation

in Eq. (6) (marked by solid arrow 3) uses the ensemble-estimated covariance between the

observation location and the model gridpoint, cj,k, denoted by the shaded region around

observation location (asterisk) and model gridpoint location (circle) to distribute the obser-

vation increments ∆yo
i onto all relevant gridpoints for each ensemble sample member so that

an “analysis PDF” is formed (left panel). This kind of ensemble-based algorithm is sequen-

tial since the prior ensemble estimate of any observation, which is used to compute σp
k,k,

cj,k, yp
i and yp in (3)–(6), is updated using the ensemble vector adjusted by what is already

known. The background covariance is a function of time and space, i.e., it is flow-dependent

and anisotropic.

As shown above, an ensemble filter uses finite samples to estimate the probability density

function (PDF) of a state variable, solving the data assimilation problem by computing the

product of modeled and observational PDFs. This process called filtering solves for siginals

that have major likelihood at the center of PDF and gets rid of noise with minor likelihood

at the tails of PDF; it uses a linear regression based on error covariance between the analysed

and observed variables (as illustrated in Fig. 2). In an ensemble-based filtering algorithm,

the background error covariance between state variables is directly computed from the model

ensemble integrations by a Monte Carlo approach. It is convenient to conduct multi-variate

data assimilation using an ensemble filter since once error covariances are available, the ob-

servational increment of any variable if available can be regressed onto another to obtain the

adjustment amount. The nature of multi-variate adjustment is essentially important for solv-

ing such problems as climate assessment that require maintenance of the joint-distribution

as much as possible. The other important advantage of ensemble-based filters is that error

covariances used in regression are flow-dependent and temporally-varying (Zhang and An-

derson 2003). Thus, they are well-suited to handle the nonstationary stochastic processes

like climate variations in which flow structures are highly anisotropic and strongly dependent

on the seasonal cycle and interannual fluctuations.
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2.3 A ‘super’-parallelized ensemble filter with CM2

Given the fact that, due to the limitation on memory storage, a single GFDL’s coupled model

run requires a parallel computation environment [a minimum number of Processing Elements

(PEs) is 20 on the SGI Intel-Altix cluster, for instance] the ensemble filter demands a so-

called “super-parallelization” technique to guarantee that model ensemble integrations and

the filtering computation are conducted iteratively online. First, a large number of PEs (say

K is the total PE number) are loaded and re-grouped to form a global PE list and M sub-

PE-lists each of which has K/M PEs (where M is the ensemble size). The analysis domain

decomposition gets done on the global PE list in which K analysis domains (each containing

a core domain and a halo, Zhang et al. 2005) are formed. Within each sub-PE-list, the model

domain decomposition is first conducted and a certain ensemble member model integration

is then advanced in parallell, in which each PE works for a sub-domain. In this process,

these M sub-PE-lists work independently and the whole ensemble of model integrations

is forwarded synchronously. Then, when model ensemble reaches an observational time, a

data transfer process from the model domains (sub-PE-lists) to the analysis domain (global

PE list) is activated so that an ensemble vector is formed in each analysis domain where a

specific PE updates the ensemble vector by assimilating observations independently. Once

the analysis process is done, data in the ensemble vectors over core domains are transferred

back to model domains for each ensemble member on a certain sub-PE-list for initializing the

next cycle of ensemble model integrations. A flow-chart illustrating the iterative procedure

specifically for a 6-member ensemble is shown in Fig. 3 in which each member uses 30 PEs

to carry out the model integration (left panels) while the daily filtering analysis uses 180

PEs (right panels).
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3 Design of a perfect model study using the existing

ocean observational network

3.1 Perfect model framework

Coupled data assimilation is a multi-task problem that involves many issues: coupled model

bias, sampling of the observing system, validation of the analysis scheme, etc. A CDA

system is so complex that any uncertainty in those aspects described above may cause the

evaluation of CDA results to become extremely difficult. To reduce the complexity, this

study excludes the model bias issue by using a perfect model study framework, or called

identical twin experiments, in which a real ocean observational network is used to sample a

modeled timeseries of climate states serving as the true solution of the assimilation problem.

Then it is feasible to evaluate the assimilation quality by verifying assimilation results with

the “truth” so that any upgrade/degrade of assimilation system, when a new assimilation

component or observational data type is added, or, an assimilation parameter is tuned, can

be quantified. Once confidence in the assimilation scheme of a CDA system is established,

how much an observing system contains the signal of climate variations can be evaluated

by verifying assimilation results based on the observational network with the truth. This

process within the identical twin framework is referred to as observing system simulation

experiment (OSSE), or called climate detection since various scale variability and trend in

climate variations have to be assessed in this process. The perfect model framework that is

designed in this study is based on the real ocean observational network which is important

not only for the CDA system developement but also for OSSEs/climate detection.

3.2 Idealized ‘observed’ data on the actual ocean observational
network

In this study, all observed ocean data are produced by projecting a model integration onto

a real observational network and superimposing white noise. The 3-dimensional structure of

the ocean observational network is based on the temperature profiles taken from World Ocean
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Database (WOD) maintained by National Oceanographic Data Center (NODC). Data types

used here mostly are the same as used by Levitus et. al (Levitus and Boyer 1994; Levitus and

Antonov 1997; Levitus et al. 2000, Levitus et al. 2005) for World Ocean Analysis (WOA)

including Expendable Bathythermograph (XBT), Conductivity-Temperature-Depth (CTD),

Drifting Buoy (DRB), Ocean Station Data (OSD), Undulating Oceanographic Recorder

(UOR) and Moored Buoy (MRB), shown in Fig. 4. The GFDL’s IPCC (Intergovernmental

Panel on Climate Change) 20th century historical integration that uses the temporally-

varying greenhouse gas (GHG) and natural aerosol (NA) radiative forcings is set to be the

true solution for the assimilation experiments. Then the observed ocean profiles are formed

by sampling the historical integration temperature and/or salinity data from the ocean ob-

servational network on a daily basis, and adding white noise. The projection from the model

space onto the observational space is basically a tri-linear (horizontal and vertical) interpo-

lation. The imposed white noise attempts to account for random measurement errors of the

observing system and the interpolation error in projection. The standard deviation of the

white noise is 0.5◦C for temperature and 0.1 PSU for salinity at the sea surface (typical error

levels for SST and sea surface salinity, SSS) and exponentially decays to zero at 500 m depth.

The representation errors of the observations, which reflect the limitation of the scales of

observation sampling, are not included in the superimposing white noise. How to realistically

construct the error distribution to represent sampling errors could be an interesting research

topic in itself.

3.3 ‘Observed’ data for the atmosphere

The atmospheric observations take the monthly mean reanalysis format (i.e. grid point val-

ues) of atmospheric variables (full gridpoints) in the GFDL’s IPCC historical run described

before. In this case, an observed atmospheric variable is a monthly mean timeseries from

the model integration, to which white noise is superimposed with standard deviations of 1

◦C for temperature, 1 m/s for u, v and 10 hPa for surface pressure. Again those numbers

represent typical standard deviation values of atmospheric observational errors that do not
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include the representation error of observations.

As discussed under equation (4) in section 2.2, the standard deviation of observational

errors is a parameter which determines the strength of the observational constraint. The

values of the atmospheric observation error standard deviation set in this section and the

values of the oceanic observation error standard deviation set in the last section may be

tuned for an optimal observational constraint.

4 Tests on oceanic data assimilation (ODA)

The ocean observational network from the last quarter of the 20th century is used to sample

the GFDL’s IPCC historical run. All assimilation experiments in this study use observed

ocean data only above 500 m. A totally independent ensemble initial condition is formed by

combining the atmosphere and land states at 00UTC 1 January of years 0041, 0042, 0043,

0044, 0045 and 0046 with the ocean and ice state at 00UTC 1 January 0044 of the GFDL’s

IPCC control run (using the 1860 fixed-year GHGNA radiative forcing). The assimilation

model integration only uses the fixed-year GHGNA radiative forcing at 1860, which is the

hardest assimilation case in perfect model study since the different GHGNA radiative forcing

in the truth and in the assimilation model may introduce the model bias into the assimilation.

The initial motivation to use fixed-year GHGNA radiative forcing in the assimilation model

attempts to find out how much of the radiative forcing information is detectable by an ocean

observational network, although the temporally-varying GHGNA radiative forcing shall be

used in real data assimilation. The impact of the temporally-varying GHGNA radiative

forcing on data assimilation for climate detection and ocean observing system evaluation

shall be discussed in an accompanying study (Zhang et al. 2006), where the assimilation

results with the fixed-year/temporally-varying GHGNA radiative forcing are compared and

analysed in detail. Then all ODA tests shown below try to anwser the following question:

By sampling the ocean observational network how much can we retrieve of the truth? In

other words these tests offer a means of simultaneously evaluating the assimilation system
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and the ocean observing system.

4.1 Importance of maintaining the T-S relationship

Given the fact that most ocean observations in the 20th century consist of temperature

only, once the oceanic data assimilation (ODA) system using the GFDL’s coupled climate

models is set up, the first issue we want to address is the capability of the ODA system to

maintain the physical balance in ocean flows, mostly characterized by the T-S relationship,

while assimilating only ocean temperature data. As shown in Fig. 4, from the 1970’s to the

1990’s the coverage of the ocean observational network had improved. We chose 1991 as a

representative sample in the 1990’s coverage for this first set of tests. Most of parameters

in the ODA scheme are the same as in Zhang et al. (2005) except for those that need to

be adjusted according to the new model configuration such as the halo size (10o for both

longitude and latitude) and the time window (2 days before and after the analysis time).

In addition, the correlation scale [the parameter a in Ω(a,d)] is multiplied by a cosφ (φ

is the grid latitude) factor to make the scale consistent with the character of the Rossby

deformation radius for a global analysis scheme. The vertical a is set to be the width of a

grid box (10 m above 200 m and it gradully increases up to 80 m arround the 500 m depth)

and each observation is only allowed to impact at most four neighboring levels (two above

and two underneath).

Figures 5 and 6 are plots of the annual mean ocean potential temperature (hereafter

just referred to as temperature for simplicity, unless otherwise noted) and salinity errors

averaged over top 500 m. Allowing the observed temperature to only correct the temperature

itself (the literature refers this as a univariate analysis scheme) denoted by T2T in panel

b of Fig. 5, the ODA process reduced the top ocean temperature error (root mean square,

RMS) by 45% (from 0.8139 to 0.4549) compared to the control case (without any data

constraint, panel a in Fig. 5). However, the univariate scheme increases the salinity error by

7% (panel b in Fig. 6) compared to the control case (panel a in Fig. 6). From the zonal-depth

16



sections of temperature (Fig. 7) and salinity (Fig. 8) errors at the equator, it is found that

the assimilation of temperature causes the top 250 m of the central Pacific Ocean to cool

(comparing panel b to panel a in Fig. 7) since data require a relatively shallow tharmocline

while the west Pacific Ocean becomes too fresh (comparing panel b to panel a in Fig. 8).

The T-S imbalance in the univariate assimilation scheme also causes larger salinity errors in

other places such as the Atlantic and Indian oceans. The following example investigates how

temperature and salinity errors can both be coherently reduced over the tropical Pacific by

employing the T-S covariance.

The cooling of the central Pacific caused by the assimilation of oceanic temperature can

be clearly exhibited in the zonal-depth distribution of the temperature correction right at the

equator (panel a in Fig. 9). Yet the positive T-S covariance over the central Pacific (panel b

in Fig. 9) means that in order to satisfy simultaneously the model relationship as well as the

cooling response, the ocean has to be fresher. Since the salinity remains unadjusted in the

univariate assimilation scheme, the water’s density in the central Pacific Ocean is higher than

it should be. This higher density causes excessive downwelling (panel b of Fig. 10) over the

central Pacific. Through the same mechanism, excessive upwelling is produced in the western

Pacific by the univariate assimilation scheme, due to the failure to maintain the correct T-S

balance. This excessive upwelling persistently transports the 500-1000 m fresh water over

the western Pacific to the top and causes a strong negative salinity error center (the water

tends to be much fresher) there. Complementary to the excessive upwelling/downwelling

over the western/central Pacific Ocean, an excessive westerly undercurrent also is observed

(panel b of Fig. 11) from the western to the central Pacific.

A multivariate assimilation scheme uses the covariance between any two variables esti-

mated by the model ensemble to accordingly adjust the ocean state when observations of

only one variable are available. Panels c in Figs. 5, 6, 7, 8, 10 and 11 depict the global

temperature and salinity errors (top 500 m average) (Figs. 5 and 6) and the tropical tem-

perature, salinity, vertical motion and undercurrent errors (zonal-depth sections, Fig. 7, 8,

10 and 11) when only temperature observations are assimilated but both temperature and
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salinity are adjusted by applying the T-S covariance. These results are denoted by the T2TS

panels. Compared to the univariate assimilation, use of the T-S covariance in the multivari-

ate assimilation significantly improves the assimilation quality due to the maintenance of the

T-S balance. Most notably, salinity errors are reduced, globally, by 44% (from panel b to c

of Fig. 8), vertical motion errors by 81% (from panel b to c of Fig. 10) and the undercurrent

errors by 50% (from panel b to c of Fig. 11).

We may attribute the positive T-S covariance along the thermocline (thick-red line in

panel b of Fig. 9) to upward/downward thermocline oscillations associated with the isopycnal

nature of ocean movements, and the negative T-S covariance at the top of the western

Pacific to the atmospheric precipitation response associated with the warmer SST (over the

ascending branch of Walker cells). It is worth mentioning that attributing the covariance to

the certain physical process is usually very difficult since a covariance reflects the syntheses

of the correlation between two variables over all scales of motions. From the viewpoint of

information estimation, use of covariances is a means of trying to maintain the nature of the

joint-distribution of a multivariate stochastic dynamical process, which plays an important

role in solving such a complex problem as climate assessment. Previously the inconsistence of

the adjusted/unadjusted temperature/salinity can only be relaxed by using a climatological

T-S relationship estimated by T and S climatological data (Troccoli and Haines 1999; Han

et al. 2004). More experiments with the application of covariances between temperature

and currents (T-U, T-V), and zonal, meridional wind stresses (T-τx, T-τy) do not produce a

dramatic improvement in the assimilation quality (not shown here) as the T-S does. However,

to better maintain the nature of the joint-distribution, the long run in section 6 and follow-up

studies for climate detection and/or ocean observing system evaluation all use the above-

mentioned covariances associated with the ocean state.
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4.2 Importance of assimilating salinity observations

With the advent of the new century, great efforts have been made to obtain more salinity

measurements (Array for Real-time Geostrophic Oceanography, Argo design and deployment,

for instance). The second set of experiments discussed below primarily attempts to quantify

the importance of explicily assimilating observed oceanic salinity as well as temperature.

Assuming that the observational network used in section 4.1 provides both temperature

and salinity measurements, the salinity profiles have the same structure as temperature

profiles except that the ‘observed’ data is the samples (projection) of the salinity of the truth

on(onto) the ocean observational network. White noise is superimposed on the projection

of the model-simulated observed salinity data by the procedure described in section 3.2.

Again, to maintain the nature of the joint-distribution, while assimilating the salinity, the

multivariate scheme also applies the T-S covariance to adjust the temperature (denoted by

TS2TS). The resulting assimilation errors are shown in panels d of Figs. 5, 6, 7, 8, 10 and 11

for global temperature and salinity (top 500 m average) (Figs. 5 and 6) and the tropical

temperature, salinity, vertical motions and undercurrents (zonal-depth sections, Fig. 7, 8, 10

and 11). Comparing panels d (TS2TS case) to panels c (T2TS case) in the above figures, it

is observed that assimilating the salinity measurements significantly improves the analysis of

salinity but has a marginal effect on temperature assimilation errors. For example, salinity

assimilation errors are reduced by 42% for global average (from panels c to d of Fig. 6), and

54% for the tropics (from panels c to d of Fig. 8) whereas temperature assimilation errors

are reduced by only 6% for the global average (from panels c to d of Fig. 5) and 13% for

the tropics (from panels c to d of Fig. 7). Again, assimilating salinity observations further

improves the estimate of the joint PDF of the multivariate stochastic process, and hence the

errors of both the vertical motion and the undercurrent are further reduced by approximately

13% by the introduction of salinity data (see panels c to d of Figs. 10 and 11).

The meridional heat/salt transport integrated zonally and vertically (
∫ ∫

ρcpTvdxdz/
∫ ∫

ρSvdxdz)

is an indicator of how well the ocean general circulation is estimated. Figure 12 shows the
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annual mean of the integral of the meridional heat/salt transport (panel a for heat, panel b

for salt) for all three data assimilation experiments. Due to the incorrectness of density in

the univariate assimilation (red in panel a, denoted by T2T) the northward heat transport

gradually increasing at low latitudes from south to north (black curve in panel a, denoted by

truth) is significantly trapped in the tropics. The use of the T-S covariance mostly fixes this

problem (green curve in panel a, denoted by T2TS). The introduction of salinity data greatly

improves the southward heat transport over the southern hemisphere subtropics (blue curve

in panel a, denoted by TS2TS). On the other hand, while fixing the problem of the tropical

northward salt transport trap, the use of the T-S covariance over-estimates the northward

salt transport in the southern hemisphere and the southward salt transport in the middle

latitudes in the northern hemisphere (green curve in panel b). Such over-estimates may come

from the imperfection of the T-S covariance estimates based upon the small ensemble size

(6 in this case); and then these over-estimates are relaxed through direct assimilation of the

salinity observations (blue curve in panel b).

5 Tests on atmospheric data assimilation (ADA): Im-

portance of maintaining the geostrophic balance

The correlation scales employed in the atmosphere filtering analysis are 1000 km for temper-

ature, and 500 km for u, v. In the following test cases, one or more atmospheric variables

are chosen as the observed variables to be assimilated The purpose is to understand how to

assimilate the atmospheric variables for improving the estimate of the atmospheric state and

the fluxes it provides to other model components in the coupled modeling system. Using

the observed atmospheric data produced in section 3.3, three assimilation cases are com-

pared and analysed: 1) case I – assimilate only atmospheric winds, 2) case II – assimilate

only atmospheric temperature, and 3) case III – assimilate both winds and temperature.

The verification discussed below is based on the first month atmospheric data assimilation

results from daily analyses.
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5.1 Assimilating winds only (case I) vs. assimilating temperature
only (case II)

The first experiment assimilates only winds (both u- and v-components) to adjust the atmo-

spheric wind itself and temperature. Figure 13 presents the vertically-averaged zonal wind

errors for the control case (without any data constraint) (panel a), an ODA-only case (T2TS,

panel b) and the case in which based on ODA the atmospheric u and v wind components are

assimilated into the atmospheric state [called ODA+ADA (wind only), panel c]. Figure 13

shows that the assimilation of u, v retrieves the true winds very well, reducing the RMS

errors arround 60% from the ODA-only (comparing panel b to panel c). Figure 14 shows

that reconstructing the atmospheric temperature by assimilating only temperature turns out

to be somewhat more difficult than reconstructing the atmospheric winds by assimilating

winds, the temperature RMS error reduction from the ODA-only being 46% (comparing

panel b to panel c). Due to the improvement on the atmospheric bottom boundary con-

ditions on SST generated by the ODA process, the ODA reduces the RMS errors for both

atmospheric winds (17%, panel b of Fig. 13) and atmospheric temperature (19%, panel b of

Fig. 14) compared to the control (panel a of Fig. 13 for winds and panel a of Fig. 14 for

temperature).

In order to illustrate the impact of assimilating only atmospheric winds or assimilating

only atmospheric temperature on the atmosphere analysis, the RMS error variation with

respect to latitudes, of winds and temperature, (summed up in the zonal and vertical domain)

are plotted in Fig. 15. From Fig. 15 it is observed that while the atmospheric winds are

reconstructed well consistently in all latitudes by assimilating the wind observations in case

I (red curve in panel a), the atmospheric temperature is improved in the tropics but becomes

worse at middle and high latitudes (red curve in panel b). On the other hand, it is relatively

easier to improve the estimate of winds at high latitudes than tropics by assimilating the

atmospheric temperature observations in case II (green curve in panel a) while the estimate

of temperature is improved in a global domain (green curve in panel b). This phenomenon
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can be explained by the geostraphic balance constraint on atmospheric flows at different

latitudes. In the tropics, due to the weak geostraphic balance constraint it is the winds

that govern the formation of the flows in which the temperature adapts to the flow, so that

once winds are corrected the temperature gets improved (case I) while the better temperature

estimates do not guarantee improved winds (case II). Meanwhile at middle and high latitudes

where geostraphic balance dominates the atmospheric flows, the thermal winds govern the

formation of the flows so that in case I the imbalance of winds and temperature causes the

temperature errors to exceed ones of the ODA-only even though the winds are corrected

well, and a corrected temperature easily improves the estimate of winds in case II. These

results are consistent with the simulation experiment study of Gordon et al. (1972).

Owing to the strong internal variability of the atmospheric flows and the small ensemble

size in the filter (6 in this case), the use of cross-covariances between temperature and winds

relaxes the imbalance only slightly, but not enough to significantly improve the assimilation

quality.

5.2 Case III: Assimilating both winds and temperature

From the analyses and discussion of the last section, assimilating both the atmospheric

temperature and wind observations is critically important for obtaining a self-consistent

atmospheric state. In this section, we show the results of an experiment in which both

winds and temperature data are assimilated. Figure 16 presents the errors of the vertical

velocity in the tropics (averaged over 20oS-20oN) for the control (panel a) and the ODA-only

(panel b) and the ODA+ADA (panel c). Figure 16 shows that since both the winds and the

temperature are consistently estimated by the assimilation, the ADA (panel c) sigificantly

improves the estimate of the Walker circulation in the tropics compared to the ODA-only

(panel b). Nevertheless it is also clear that the estimate of the Walker circulation in the

ODA-only is much better than the control. Again, this is because the ODA process provides

a better SST bottom boundary condition for the atmosphere. Figure 17 depicts the errors
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of the zonal wind stress that the atmosphere exerts on the ocean surface. It shows that

the estimate of the zonal wind stress is improved by the ADA over much of the globe, but

especially over the North Atlantic.

It’s worth mentioning that although the problem discovered in the last section by as-

similating monthly mean winds or temperature individually may more or less be relaxed

by assimilating daily data, the destruction of the geostrophic balance while only using the

atmospheric wind data is a non-negligible issue. A coherent initial condition for a reliable

coupled system shall be a key element for improving the seasonal-interannual forecasts (an

El Nino and Southern Oscillation, ENSO event, for instance).

6 A 25-year ODA long run test using the CDA system

The temperature of the GFDL’s IPCC 20th century historical run is sampled onto the 20th

century last quarter ocean temperature network (Fig. 4) to produce a 25-year idealized

observed dataset, as described in section 3.2. Using the ensemble initial condition and

the assimilation model configuration described in section 3.2, and the ocean assimilation

parameters described in section 4.1, the assimilation system is run to assimilate the 25-year

ocean temperature observations. However to simulate the sparseness of XBT observations in

the deep ocean, the observations used in this experiment are limited above 500 m. Besides

the temperature correction, the observed temperature is allowed to correct salinity and

currents using the covariance between these variables and the temperature. And also, ocean

temperature observations above 50 m are allowed to impact the zonal and meridional wind

stresses (τx and τy) too, as the direct means of applying coupling dynamics into the CDA

system mentioned in the introduction. The heat/water fluxes appear to be very sensitive

to the adjustment by the ocean temperature observations, and due to the small ensemble

size (6) used in this study, the adjustment of heat/water fluxes by the ocean temperature

observations is not included here.

The error reduction of the ocean temperature over top 500 m by the ODA is presented
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in Fig. 18. It is shown that the global RMS error is reduced by roughly 60% (from 0.85oC

to 0.35oC) (panel a) during the 5-year spinup period. The 20-year time mean errors (from

1981 to 2000) of the vertically-averaged top 500 m ocean temperature are shown in panels

b (control) and c (ODA). Comparing panel c to panel b, it is observed that except for

the Southern Ocean (the south of 32oS) and the North Atlantic, the ODA significantly

reduced the temperature errors below 0.2o from 1o of the control. The interesting portions

of the assimilation temperature errors include the southwest-northeast error belt along the

northwest coast line of the Atlantic and a nearly equator-symmetric error distribution over

central-east tropical Pacific. The former must be associated with the complex heat/salt

transport mechanism over the North Atlantic including meridional overturning circulation

(MOC) and the latter may be created by the extra Kelvin waves induced by the imbalance

in the data constraint process and their reflection at the east coast. Some degree imbalance

still exists in the data constraint process mainly because of an imperfect T-S relation due

to the small ensemble size. On the other hand, the tempertaure assimilation errors over

the Southern Ocean basically can be attributed to sparseness of observations over there (see

Fig. 4).

In order to examine the capability of the ODA to reconstruct ENSO variability, the

anomalies of the regionally-averaged ocean temperature over Nino3.4 are computed and

presented in Fig. 19. Figure 19 shows that except for some small scale details, the ODA

(2nd panel from the top, denoted by ASSIM) captures nearly all events, i.e. reproducing the

phase and amplitude of all ENSO events of the truth (third panel) while the control (top,

denoted by CTL) exhibits its own ENSO variability that is entirely different from the truth.

The ability of the ODA to accurately reconstruct the ENSO variability can be more clearly

demonstrated by the vertical average of the Nino3.4 ocean temperature anomalies (bottom

panel). Note that the assimilation curve (red) follows the truth (black) very well.

Another interesting point about the coupled ODA process we want to show here is the

response of the atmospheric bottom winds to the SST generated by the ODA. Figure 20

presents the zonal wind stress (τx) exerted on the ocean surface in the tropics by the at-
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mosphere in three cases: the control (top panel), the ODA (2nd panel from the top) and

the truth (third panel). First, the control τx shows an entirely different variability from the

truth, i.e., while a few strong windbursts associated with strong ENSO events appear in the

truth during the first 20 years, the control only has some weak τx anomalies with different

phase. The ODA τx captures the major windburst events that occur in the truth, although

the former tends to be a smoothed version of the truth. Also note that the very strong

windburst event in 82/83 is reconstructed precisely.

It is useful to estimate the uncertainty of various variables of the assimilation product in

an ensemble filtering framework. This exercise may further our understanding of assimilation

results and possibly provides clues onto how to improve the assimilation system. The up-

per/lower bounds of the ODA ensemble spread of the Nino3.4 temperature anomaly averaged

over top 250 m is plotted by pink-dashed lines in the bottom panel of Fig. 19. Comparing

the ODA spread to the control spread (green-dashed), that is estimated by using 6 25-year

non-overlap timeseries of model simulation, the ODA reduces the uncertainty of the model

heat content dramatically due to the direct constraint of ocean temperature observations.

However comparing the spread of assimilation wind stress (pink-dashed lines in the bottom

panel of Fig. 20) to the spread of the control wind stress (green-dashed), although the entire

ensemble of the ODA wind stresses appears to follow the truth’s trend, the uncertainty of

the zonal wind stress is only slightly reduced by the ODA. The horizontal distribution of the

time mean (25 years) of standard deviations of the spread of the zonal wind stress and SST is

shown in Fig. 21. The largest uncertainty of the model wind stress is located over the North

Atlantic, which may be associated with the North Atlantic oscillation (NAO) phenomenon

and the low-level jets there. Two other places exhibiting large model wind stress spread are

the North Pacific and the high latitudes in the Southern Ocean, basically consistent with the

corresponding regional storm tracks. The largest model spreads of SST (panels c) are located

over the equatorial Pacific and the North Atlantic. The former reflects the ENSO variability

that is associated with the Kelvin-wave activity and strong atmosphere-ocean interaction

while the latter can be linked to the North Atlantic gyre. Also, some stronger spread cen-
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ters associated with Rossiby-wave activity are found in the middle and high latitudes of the

Pacific. Beneath the mixed layer, these Rossby-wave-related spread centers become even

stronger and appear to spread over the whole Pacific (not shown here). Through the ODA,

the uncertainties of ocean temperature over the Pacific and Atlantic are significantly reduced

(panel d) by the direct assimilation of observed ocean temperatures while the uncertainties

of wind stresses are reduced slightly at the equator and remain nearly unchanged off equator

(panel b, and see the bottom of Fig. 20). In this perfect model ODA experiment, the at-

mospheric spread is based on both stochastic initial conditions and SST uncertainties. The

difference between the wind stress spread and the ocean temperature spread generated by

the ODA (in Figs. 19, 20 and 21) imply that the atmospheric spread is dominated by the

strong internal variability of the atmosphere, while the convergence of SST brought about

by the ODA is not sufficient to constrain the atmosphere.

Finally, timeseries of heat content anomalies in various ocean basins (basin-averaged

over the top 500 m) are presented in Fig. 22. For comparison, all anomalies are computed

using the truth’s climatology. The ocean mask used here is the same as in the work of

Levitus et al. (2000). Comparing the black curve (the truth) in Fig. 22 to the estimate of

Levitus et al. (2000, Fig. 1) for the top 300 m using real ocean temperature observations,

it is found that the GFDL’s model simulation using the historical GHGNA radiative forcing

shows a consistent multi-decadal warming trend in almost all oceans with its own inter-

annual variability. Fig. 22 shows that for oceans that have reasonable observation coverage

(as shown in Fig. 4) the ODA process retrieves the trend and the variability of heat content

quite well, with a reduced uncertainty (pink-dashed/green-dashed curves represent the upper

and lower bounds of the ODA/control spread). While the heat content anomalies of those

oceans (that have a good data coverage) approch the truth quickly (i.e. within a couple

of years) (e.g. over the Pacific and North Atlantic OOceans) a relatively longer spinup is

required for the oceans in which data coverage is sparse (e.g. over the South Atlantic, South

Indian and North Indian Oceans). It is interesting to notice that the ODA’s heat content in

the Southern Ocean and the Arctic Ocean follows the general trend of the truth with different
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details. For example, in the assimilation, the Southern Ocean heat content remains a nearly

constant departure from the truth while the Arctic Ocean heat content exhibits some strong

warmer events in the middle of 1990’s. Due to the lack of observations in the Southern

Ocean and the Arctic Ocean (see Fig. 4), the adjustment of the trend in both oceans may

be attributed to the communication between ocean circulations in different areas or/and

between different coupling components (e.g. AchutaRao et al. 2006). For example, the

adjustment of the Southern Ocean heat content trend can be maintained by the interaction

between the circulations in the Southern Ocean and other neigbouring oceans such as the

South Pacific, the South Atlantic and the South Indian Oceans, where the strong data

constraint in ODA significantly corrects their circulations. The adjustment of the Arctic

Ocean heat content trend may be more complex by also being associated with the ice-

water interaction and ice-atmosphere flux exchanges. More detailed analyses on interactions

between different ocean circulations and different coupling components and their impact on

climate detection will be investigated in future studies.

7 Conclusions and discussion

We have described a coupled data assimilation (CDA) system based on the GFDL’s coupled

climate model (CM2) and an ensemble adjustment Kalman filter. The method produces en-

semble estimates of the coupled system state and its uncertainty, by assimilating observations

in a temporally-continuous manner. The resulting ensemble can then be used to initialize

seasonal to multi-decadal forecasts of climate variability and trends. The experiments herein

serve as a proof-of-concept ensemble data assimilation in comprehensive coupled models.

The CDA system is evaluated using a series of twin experiments, in which a particular

model integration [with temporally-evolving greenhouse gases and natural aerosol (GHGNA)

radiative forcings] serves as the “truth” from which observations are drawn. These exper-

iments highlight the importance of maintaining temperature-salinity relationships (associ-

ated with particular water masses) in ocean data assimilation (ODA), and of maintaining
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geostrophic balance for atmospheric data assimilation (ADA). They also address whether

the ODA in the CDA system is capable of reconstructing the 20th-century variability and

trends of global ocean heat content, given the 20th-century ocean observing network.

Since the atmosphere exhibits strong internal variability, a small ensemble (6 in this

case) may not accurately evaluate the covariance among the simulated fields – and thus

the assimilation cannot effectively adjust the analysis solution away from the observational

locations. The ADA experiments with dense atmospheric observations suggest that in the

tropics, observations of the winds are most useful in reconstructing the atmospheric state

(Gordon et al. 1972); while in mid- and high-latitudes, atmospheric temperature are more

useful for establishing geostrophic balance. The more slowly-evolving ocean, in contrast,

appears amenable to assimilation even with the samll ensemble. The ODA effectively utilizes

the T-S covariances to maintain realistic water masses, isopycnal transports, and the observed

co-location of warm SST and enhanced precipitation in tropical warm pool regions, even

when temperature-only observations are assimilated. At higher latitudes, direct salinity

observations become more important for constraining the ocean circulation.

To test how well the analysis system reconstructs the oceanic impacts of 20th-century

radiative forcing changes, we performed a 25-year CDA using the historical oceanic temper-

ature observing network. We find that the assimilation takes at most five years to spin up

to equilibrium, at which point the heat content in all eight ocean basins closely resembles

the true trends and variability – with a 60% reduction in RMS ocean temperature errors

relative to an unconstrained control run. The true heat content variability is captured best

in the Pacific, where the data coverage is relatively dense; ENSO variations in particular are

reconstructed very well. The analysis less skillful in high-latitude regions, where observa-

tions are extremely sparse over the 20th century; while the assimilation is unable to capture

the interannual variability of oceanic heat content, it does reconstruct the long-term trend

teleconnected from lower latitudes.

The purpose of this study has been to outline the design, implementation, and initial
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evaluation of the ensemble CDA system, in terms of reconstructing the 20th-century oceanic

temperature trends and variability. In a series of follow-up studies, we intend to explore

several remaining issues:

1. Impacts of temporally-varying radiative forcing on the state estimate. The present

study represents a particularly stringent test for the CDA, in that the “truth” run feels

historically-evolving GHGNA forcings, while the assimilation run feels GHGNA radiative

forcings from a fixed year (1860). Presumably more realistic radiative forcing will improve

the CDA performance.

2. Impacts of the observational network on the detection of climate variability and

trends. In particular, we will explore to what extent the deep-profile temperature and salinity

measurements from Argo floats can better constrain the assimilation in high latitudes, which

experience substabtial freshwater input from river runoff and melting ice. These freshwater

inputs, combined with strong thermohaline transports, may be a key in determining the

Atlantic meridional overturning circulation (MOC) – an important source of multi-decadal

climate variability and trends.

3. Impacts of atmospheric observations on the coupled state estimate, and on the initial

conditions used for forecasts of global climate. Presumably this will have a positive impact for

the tropics and ENSO, where the air-sea fluxes of heat and momentum are largely controlled

by the atmosphere. Estimation and prediction of the high latitude oceans and the global

ocean circulation may also benefit from ADA, given the link between atmospheric NAO and

the MOC (Delworth and Greatbatch 2000; Delworth and Dixon 2000).

4. Impacts of model drifts and biases on the assimilation skill. Mainly, two approaches

we would like to explore include: (a) assimilation of additional kinds of observations – such

as satellite SSTs and altimeter (Mellor and Ezer, 1991), and ocean currents from drifting

and moored buoys for increasing the sample size of oceanic observations; and (b) the use

of multiple coupled models and multiple model parameters in the assimilating ensemble for

improving the estimate of the prior PDF. In particular, for the first approach, since altimeter
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data contain the temperature and salinity information within the whole water column, based

on the model dynamics the ensemble filter may project sea surface height information onto

the vertical structure so as to correct the biases underneath the surface. Therefore, once

real data assimilation is initialized, use of altimeter data in assimilation and evaluation

of their impact on assimilation quality shall be ranked as a leading order priority. The

second approach not only benefits the assimilation by improving the prior PDF estimate but

also enhances the probablistic forecast quality by initializing the multiple model ensemble

forecasts.
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FIGURE CAPTIONS

Fig. 1 Schematic diagram illustrating how the GFDL’s coupled model exchanges fluxes

between model components (black arrows), and constraints of oceanic/atmospheric

observations in this particular climate detection study (red arrows). The dashed green

arrow denotes the radiative forcings in the coupled system, and the dashed means that

the radiative forcings used during assimilation is set as fixed-year (1860).

Fig. 2 Cartoon of how a two-step data assimilation procedure works for updating the esti-

mate of the probability distribution of a single state variable, x, given a single observa-

tion, y, in in the ensemble adjustment Kalman filter (EAKF) under the least squares

framework. The righthand column represents step one: updating the probability den-

sity function (PDF) at the observation location as a new observation comes in (denoted

by thick-dotted arrow STEP1). The solid arrow 1 denotes that the prior PDF at the

observation location is squashed by a new observation (denoted by the right-bottom

dashed curve), computed by Eq. (3), and the solid arrow 2 represents the shift of the

prior ensemble mean at the observation location due to the new observation, computed

by Eq. (5). The thick-dotted arrow from the righthand column to the lefthand column

denotes the step two: using the correlation distribution (shaded region) to distribute

the observation increments to impacted gridpoints, computed by Eq. (6). The solid

arrow 3 represents the process of updating the PDF of a gridpoint.

Fig. 3 Flow-chart of the GFDL’s super-parallelized coupled data assimilation system for

180 PEs case. Generally, this system can be scaled for any ensemble size and any big

enough processing element (PE) number. But in practice due to efficiency consideration

it is currently scaled for running 6, 12, 24 ensemble members by invoking a minimum

of 120 PEs, and a maximum of 1440 PEs on the Altix (GFDL’s IC cluster or NASA’s

Columbia cluster).

Fig. 4 Samples of ocean observational network during the last quarter of the 20th century.
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Fig. 5 Annual mean ocean potential temperature errors averaged over top 500 m for 1)

the control, simulation with no data constraint, b) only allowing temperature obser-

vations to impact temperature itself (denoted by T2T, univariate analysis scheme),

c) allowing temperature observations to impact both temperature and salinity using

their cross-covariance (denoted by T2TS, multivariate analysis scheme) and d) using

both temperature and salinity observations to adjust both temperature and salinity

(denoted by TS2TS, multivariate analysis scheme). The contour interval is 0.2oC and

contour 0 is omitted. The number at the upperright of each panel marks the root mean

square error of the top 500 m ocean potential temperature for each case.

Fig. 6 Same as Fig. 5 except for the salinity and the contour interval is 0.05 PSU.

Fig. 7 Same as Fig. 5 except for an x-z section at the equator.

Fig. 8 Same as Fig. 7 except for salinity and the contour interval is 0.05 PSU.

Fig. 9 Annual mean corrections of potential temperature (a) and salinity (c), and the T-S

covariance distributed on the x-z section at the equator produced by the T2TS analysis

scheme (b). The contour interval is 0.01oC for (a), 0.002 PSU oC for (b) and 0.005

PSU for (c).

Fig. 10 Same as Fig. 7 except for the vertical motions and the contour interval is 0.05

m/day.

Fig. 11 Same as Fig. 7 except for the undercurrent and the contour interval is 0.05 m/s.

Fig. 12 The zonal and vertical integral of the meridional heat (a) and salinity (b) transports

in the truth (black), univariate assimilation (T2T, red), the multivariate assimilation

using T-S covariance without salinity observations (T2TS, green) and the multivariate

assimilation using both T and S observations (TS2TS, blue).

Fig. 13 The atmospheric vertically-averaged zonal wind errors for (a) the control, (b) the

ODA-only and (c) the case with ODA plus the atmospheric wind assimilation. The
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contour interval is 2 m/s. The contour 0 is omitted.

Fig. 14 The atmospheric vertically-averaged temperature errors for (a) the control, (b) the

ODA-only (T2TS case) and (c) the case with ODA plus the atmospheric temperature

assimilation. The contour interval is 0.5◦C. The contour 0 is omitted.

Fig. 15 The RMS errors computed on zonal-vertical domain, for the atmospheric zonal

wind (a) and the atmospheric temperature (b) in the ODA-only (black), the case with

ODA plus the atmospheric wind assimilation (red) and the case with ODA plus the

atmospheric temperature assimilation (green).

Fig. 16 Vertical motion errors of the tropical atmosphere (averaged over 20oS-20oN for the

control (a), the ODA-only (b) and ODA+ADA (c). The contour interval is 0.1 m/day.

The contour 0 is omitted.

Fig. 17 Zonal wind stress errors for the control (a), the ODA-only (b) and ODA+ADA (c).

The contour interval is 0.04 N/m2. The contour 0 is omitted.

Fig. 18 Timeseries of the global RMS error of the top 500 m ocean temperature (a) for

the control (dotted) and the ODA (solid), and time mean of vertically-averaged ocean

temperature errors over the top 500 m. The contour interval in (b) and (c) is 0.2oC.

The contour 0 is omitted.

Fig. 19 Timeseries of the anomalies of the Nino3.4 ocean temperature for the control (de-

noted by CTL), the ODA (denoted by ASSIM) and the truth. Curves in the bottom

panel are the vertical averages over top 250 m for the control (blue), the ODA (red) and

the truth (black). The upper and lower bounds of the control/ODA spread are plotted

by the green-dashed/pink-dashed lines in the bottom panel. The control (model clima-

tological) spread is estimated by 6 25-year non-overlap timeseries and the ODA spread

is computed by 6 ensemble members in the filter. All anomalies are computed using

the truth’s climatology and the contour interval for the first three panels is 0.5oC.
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Fig. 20 Timeseries of the anomalies of the zonal wind stress (τx) at the tropical Pacific (5oS-

5oN average for the control (denoted by CTL), the ODA (denoted by ASSIM) and the

truth. Curves in the panel next to the bottom are the zonal averages over the Pacific

for the control (green), the ODA (red) and the truth (black). The upper and lower

bounds of the control/ODA spread are plotted by the green-dashed/pink-dashed lines

in the bottom panel. The method for estimating the spread is the same as for Fig. 19.

All anomalies are computed using the truth’s climatolgy and the contour interval for

the first three is 0.01 N/m2.

Fig. 21 Time mean of the standard deviations of the zonal wind stress spread (top a, b)

and the SST spread (bottom c, d) in the control (left a, c) and ODA (right b, d). The

method for estimating the spread is the same as for Fig. 19. The contour interval is

0.01 N/m2 for a, b, and 0.1oC for c, d.

Fig. 22 Timeseries of the anomalies of the top 500 m ocean heat content (averaged tem-

perature) in different oceans for the truth (black), the ODA (red) and the control

(blue). The upper and lower bounds of the control/ODA spread are plotted by the

green-dashed/pink-dashed lines. The method for estimating the spread is the same as

for Fig. 19. All anomalies are computed using the truth’s climotolgy.
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Figure 1: Schematic diagram illustrating how the GFDL’s coupled model exchanges fluxes
between model components (black arrows), and constraints of oceanic/atmospheric observa-
tions in this particular climate detection study (red arrows). The dashed green arrow denotes
the radiative forcings in the coupled system, and the dashed means that the radiative forcings
used during assimilation is set as fixed-year (1860).



Figure 2: Cartoon of how a two-step data assimilation procedure works for updating the es-
timate of the probability distribution of a single state variable, x, given a single observation,
y, in in the ensemble adjustment Kalman filter (EAKF) under the least squares frame-
work. The righthand column represents step one: updating the probability density function
(PDF) at the observation location as a new observation comes in (denoted by thick-dotted
arrow STEP1). The solid arrow 1 denotes that the prior PDF at the observation location
is squashed by a new observation (denoted by the right-bottom dashed curve), computed
by Eq. (3), and the solid arrow 2 represents the shift of the prior ensemble mean at the
observation location due to the new observation, computed by Eq. (5). The thick-dotted
arrow from the righthand column to the lefthand column denotes the step two: using the
correlation distribution (shaded region) to distribute the observation increments to impacted
gridpoints, computed by Eq. (6). The solid arrow 3 represents the process of updating the
PDF of a gridpoint.



Figure 3: Flow-chart of the GFDL’s super-parallelized coupled data assimilation system
for 180 PEs case. Generally, this system can be scaled for any ensemble size and any big
enough processing element (PE) number. But in practice due to efficiency consideration it
is currently scaled for running 6, 12, 24 ensemble members by invoking a minimum of 120
PEs, and a maximum of 1440 PEs on the Altix (GFDL’s IC cluster or NASA’s Columbia
cluster).



Figure 4: Samples of ocean observational network during the last quarter of the 20th century.



Figure 5: Annual mean ocean potential temperature errors averaged over top 500 m for 1)
the control, simulation with no data constraint, b) only allowing temperature observations
to impact temperature itself (denoted by T2T, univariate analysis scheme), c) allowing tem-
perature observations to impact both temperature and salinity using their cross-covariance
(denoted by T2TS, multivariate analysis scheme) and d) using both temperature and salin-
ity observations to adjust both temperature and salinity (denoted by TS2TS, multivariate
analysis scheme). The contour interval is 0.2oC and contour 0 is omitted. The number at the
upperright of each panel marks the root mean square error of the top 500 m ocean potential
temperature for each case.



Figure 6: Same as Fig. 5 except for the salinity and the contour interval is 0.05 PSU.



Figure 7: Same as Fig. 5 except for x-z section at the equator.



Figure 8: Same as Fig. 7 except for salinity and the contour interval is 0.05 PSU.



Figure 9: Annual mean corrections of potential temperature (a) and salinity (c), and the
T-S covariance distributed on the x-z section at the equator produced by the T2TS analysis
scheme (b). The contour interval is 0.01oC for (a), 0.002 PSU oC for (b) and 0.005 PSU for
(c).



Figure 10: Same as Fig. 7 except for the vertical motions and the contour interval is 0.05
m/day.



Figure 11: Same as Fig. 7 except for the undercurrent and the contour interval is 0.05 m/s.



Figure 12: The zonal and vertical integral of the meridional heat (a) and salinity (b) trans-
ports in the truth (black), univariate assimilation (T2T, red), the multivariate assimilation
using T-S covariance without salinity observations (T2TS, green) and the multivariate as-
similation using both T and S observations (TS2TS, blue).



Figure 13: The atmospheric vertically-averaged zonal wind errors for (a) the control, (b) the
ODA-only and (c) the case with ODA plus the atmospheric wind assimilation. The contour
interval is 2 m/s. The contour 0 is omitted.



Figure 14: The atmospheric vertically-averaged temperature errors for (a) the control, (b)
the ODA-only (T2TS case) and (c) the case with ODA plus the atmospheric temperature
assimilation. The contour interval is 0.5◦C. The contour 0 is omitted.



Figure 15: The RMS errors computed on zonal-vertical domain, for the atmospheric zonal
wind (a) and the atmospheric temperature (b) in the ODA-only (black), the case with ODA
plus the atmospheric wind assimilation (red) and the case with ODA plus the atmospheric
temperature assimilation (green).



Figure 16: Vertical motion errors of the tropical atmosphere (averaged over 20oS-20oN for
the control (a), the ODA-only (b) and ODA+ADA (c). The contour interval is 0.1 m/day.
The 0-line is omitted.



Figure 17: Zonal wind stress errors for the control (a), the ODA-only (b) and ODA+ADA
(c). The contour interval is 0.04 N/m2. The 0-line is omitted.



Figure 18: Timeseries of the global RMS error of the top 500 m ocean temperature (a)
for the control (dotted) and the ODA (solid), and time mean of vertically-averaged ocean
temperature errors over the top 500 m. The contour interval in (b) and (c) is 0.2oC. The
contour 0 is omitted.



Figure 19: Timeseries of the anomalies of the Nino3.4 ocean temperature for the control
(denoted by CTL), the ODA (denoted by ASSIM) and the truth. Curves in the bottom
panel are the vertical averages over top 250 m for the control (blue), the ODA (red) and
the truth (black). The upper and lower bounds of the control/ODA spread are plotted by
the green-dashed/pink-dashed lines in the bottom panel. The control (model climatological)
spread is estimated by 6 25-year non-overlap timeseries and the ODA spread is computed by
6 ensemble members in the filter. All anomalies are computed using the truth’s climatology
and the contour interval for the first three panels is 0.5oC.



Figure 20: Timeseries of the anomalies of the zonal wind stress (τx) at the tropical Pacific
(5oS-5oN average for the control (denoted by CTL), the ODA (denoted by ASSIM) and the
truth. Curves in the panel next to the bottom are the zonal averages over the Pacific for
the control (green), the ODA (red) and the truth (black). The upper and lower bounds of
the control/ODA spread are plotted by the green-dashed/pink-dashed lines in the bottom
panel. The method for estimating the spread is the same as for Fig. 19. All anomalies are
computed using the truth’s climatolgy and the contour interval for the first three is 0.01
N/m2.



Figure 21: Time mean of the standard deviations of the zonal wind stress spread (top a,
b) and the SST spread (bottom c, d) in the control (left a, c) and ODA (right b, d). The
method for estimating the spread is the same as for Fig. 19. The contour interval is 0.01
N/m2 for a, b, and 0.1oC for c, d.



Figure 22: Timeseries of the anomalies of the top 500 m ocean heat content (averaged tem-
perature) in different oceans for the truth (black), the ODA (red) and the control (blue). The
upper and lower bounds of the control/ODA spread are plotted by the green-dashed/pink-
dashed lines. The method for estimating the spread is the same as for Fig. 19. All anomalies
are computed using the truth’s climotolgy.


